
doi: 10.1109/83.148602
pmid: 18296162
A vector quantization scheme based on the classified vector quantization (CVQ) concept, called predictive classified vector quantization (PCVQ), is presented. Unlike CVQ where the classification information has to be transmitted, PCVQ predicts it, thus saving valuable bit rate. Two classifiers, one operating in the Hadamard domain and the other in the spatial domain, were designed and tested. The classification information was predicted in the spatial domain. The PCVQ schemes achieved bit rate reductions over the CVQ ranging from 20 to 32% for two commonly used color test images while maintaining the same acceptable image quality. Bit rates of 0.70-0.93 bits per pixel (bpp) were obtained depending on the image and PCVQ scheme used.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
