Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Antennas and Propagation
Article . 1996 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On fractional calculus and fractional multipoles in electromagnetism

Authors: Nader Engheta;

On fractional calculus and fractional multipoles in electromagnetism

Abstract

Summary: In this paper, using the concept and tools of fractional calculus, we introduce a definition for `fractional-order' multipoles of electric-charge densities, and we show that as far as their scalar potential distributions are concerned, such fractional-order multipoles effectively behave as `intermediate' sources bridging the gap between the cases of integer-order point multipoles such as point monopoles, point dipoles, point quadrupoles, etc. This technique, which involves fractional differentiation or integration of the Dirac delta function, provides a tool for formulating an electric source distribution whose potential functions can be obtained by using fractional differentiation or integration of potentials of integer-order point-multipoles of lower or higher orders. As illustrative examples, the cases of three-dimensional (point source) and two-dimensional (line source) problems in electrostatics are treated in detail, and the extension to the time-harmonic case is also addressed. In the three-dimensional electrostatic example, we suggest an electric-charge distribution which can be regarded as an `intermediate' case between cases of the electric-point monopole (point charge) and the electric-point dipole (point dipole), and we present its electrostatic potential, which behaves as \(r^{-(1+\alpha)}P_\alpha (-\cos \theta)\), where \(0<\alpha <1\) and \(P_\alpha(\cdot)\) is the Legendre function of noninteger degree \(\alpha\), thus denoting this charge distribution as a fractional \(2^\alpha\)-pole. At the two limiting cases of \(\alpha=0\) and \(\alpha=1\), this fractional \(2^\alpha\)-pole becomes the standard point monopole and point dipole, respectively. A corresponding intermediate fractional-order multipole is also given for the two-dimensional electrostatic case. Potential applications of this treatment to the image method in electrostatic problems are briefly mentioned. Physical insights and interpretation for such fractional-order \(2^\alpha\)-poles are also given.

Related Organizations
Keywords

Fractional derivatives and integrals, electric-charge densities, Electromagnetic theory (general), fractional calculus, fractional-order multipoles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    336
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
336
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?