Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Signal Processi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Signal Processing Magazine
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Signal Processing Magazine
Article . 2002 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Anomaly detection from hyperspectral imagery

Authors: David W. J. Stein; Scott G. Beaven; Lawrence E. Hoff; Edwin M. Winter; Alan P. Schaum; Alan D. Stocker;

Anomaly detection from hyperspectral imagery

Abstract

We develop anomaly detectors, i.e., detectors that do not presuppose a signature model of one or more dimensions, for three clutter models: the local normal model, the global normal mixture model, and the global linear mixture model. The local normal model treats the neighborhood of a pixel as having a normal probability distribution. The normal mixture model considers the observation from each pixel as arising from one of several possible classes such that each class has a normal probability distribution. The linear mixture model considers each observation to be a linear combination of fixed spectra, known as endmembers, that are, or may be, associated with materials in the scene, and the coefficients, interpreted as fractional abundance, are constrained to be nonnegative and sum to one. We show how the generalized likelihood ratio test (GLRT) may be used to derive anomaly detectors for the local normal and global normal mixture models. The anomaly detector applied with the linear mixture approach proceeds by identifying target like endmembers based on properties of the histogram of the abundance estimates and employing a matched filter in the space of abundance estimates. To overcome the limitations of the individual models, we develop a joint decision logic, based on a maximum entropy probability model and the GLRT, that utilizes multiple decision statistics, and we apply this approach using the detection statistics derived from the three clutter models. Examples demonstrate that the joint decision logic can improve detection performance in comparison with the individual anomaly detectors. We also describe the application of linear prediction filters to repeated images of the same area to detect changes that occur within the scene over time.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    556
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 54
  • 3
    views
    54
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
556
Top 0.1%
Top 0.1%
Top 10%
3
54
hybrid