Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Antennas and Pr...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Antennas and Propagation Magazine
Article . 2001 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hearing microwaves: the microwave auditory phenomenon

Authors: James C. Lin;

Hearing microwaves: the microwave auditory phenomenon

Abstract

The microwave auditory phenomenon, or the microwave hearing effect, pertains to the hearing of short pulses of modulated microwave radiation at high peak power by humans and laboratory animals. Anecdotal and journalistic reports of the hearing of microwave pulses persisted throughout the 1940s; and 1950s. The first scientific report of the phenomenon appeared in 1961. The effect has been observed for RF exposures across a wide range of frequencies (450-3000 MHz). It can arise, for example, at an incident energy-density threshold of 400 mJ/m2 for a single 10-microsecond-wide pulse of 2450 MHz microwave energy, incident on the head of a human subject. And it has been shown to occur at an SAR threshold of 1.6 kW/kg for a single 10-microsecond-wide pulse of 2450 MHz microwave energy, impinging on the head. A single microwave pulse can be perceived as an acoustic click or knocking sound, and a train of microwave pulses to the head can be sensed as an audible tune, with a pitch corresponding to the pulse-repetition rate (a buzz or chirp). Note that the SAR threshold of 1.6 kW/kg is about 1000 times higher than that allowable by FCC rules for cellular mobile telephones.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!