
doi: 10.1109/72.286889
pmid: 18276524
The application of neural networks to the optimum routing problem in packet-switched computer networks, where the goal is to minimize the network-wide average time delay, is addressed. Under appropriate assumptions, the optimum routing algorithm relies heavily on shortest path computations that have to be carried out in real time. For this purpose an efficient neural network shortest path algorithm that is an improved version of previously suggested Hopfield models is proposed. The general principles involved in the design of the proposed neural network are discussed in detail. Its computational power is demonstrated through computer simulations. One of the main features of the proposed model is that it will enable the routing algorithm to be implemented in real time and also to be adaptive to changes in link costs and network topology.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 200 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
