
doi: 10.1109/72.165591
pmid: 18276486
A wavelet network concept, which is based on wavelet transform theory, is proposed as an alternative to feedforward neural networks for approximating arbitrary nonlinear functions. The basic idea is to replace the neurons by ;wavelons', i.e., computing units obtained by cascading an affine transform and a multidimensional wavelet. Then these affine transforms and the synaptic weights must be identified from possibly noise corrupted input/output data. An algorithm of backpropagation type is proposed for wavelet network training, and experimental results are reported.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.01% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
