
doi: 10.1109/7.1053
An instrumental variable (IV) approach is presented for estimating the weights of an adaptive antenna array. Theoretical analysis of the IV method shows that the antenna gain weights are independent of finitely correlated noise, so that unbiased estimation of signal arrival angles is possible. Only matrix inversions are required to compute the weight estimates. In this sense, the IV method provides performance comparable with eigenvector techniques but with lower computational burden. Both minimal and overdetermined IV estimators are derived. The overdetermined estimators give the same theoretical array weights as minimal estimators, but yield more accurate weight estimates in real data situations. Simulation results are presented to compare these IV methods with one another and with conventional matrix inversion weight estimators. In these examples it is seen that IV methods are able to resolve closely spaced interference sources when conventional matrix inversion techniques cannot. It is also shown that overdetermined methods are capable of providing weight estimates with lower variances than those of minimal methods. >
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
