
doi: 10.1109/65.238152
Asynchronous transfer mode (ATM) is a packet switched data transport system based on short, fixed length cells. Each cell carries a virtual channel indicator (VCI) and virtual path indicator (VPI) in its header. Essential to the services offered by the ATM networks is the ATM adaptation layer (AAL), an ITU-TSS defined layer that adapts the cell-based ATM physical layer to packet, datagram, or bit-stream-oriented higher layers. Failure modes causing cell loss along a virtual connection are examined, and the ways AALs cope are analyzed. The sources of cell loss and their effects on AAL3/4 or AAL5 type of service are described. The usefulness of the ability of AAL3/4 to pass fragments of corrupted data up to higher layer protocols is discussed, and the implementation of selective cell discarding within switching nodes is considered, and the limitations imposed by each AAL are examined. >
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
