Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control
Article . 1999 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Blind deconvolution of ultrasonic traces accounting for pulse variance

Authors: K F, Kaaresen; E, Bolviken;

Blind deconvolution of ultrasonic traces accounting for pulse variance

Abstract

The ability of pulse-echo measurements to resolve closely spaced reflectors is limited by the duration of the ultrasonic pulse. Resolution can be improved by deconvolution, but this often fails because frequency selective attenuation introduces unknown changes in the pulse shape. In this paper we propose a maximum a posteriori algorithm for simultaneous estimation of a time varying pulse and high-resolution deconvolution. A priori information is introduced to encourage estimates where the pulse varies only slowly and the reflectivity sequence is sparse. This adds sufficient regularization to the problem, and no further assumptions on the pulse such as minimum phase or a particular parametric form are needed. The joint pulse and reflectivity estimate are computed iteratively by alternating steps of pulse estimation and reflectivity estimation. The first step amounts to only a linear least squares fit. The second step is a difficult combinatorial optimization problem that we solve by a suboptimal but efficient search procedure. Due to the sparseness assumption, our approach is particularly suited for layered media containing a limited number of abrupt impedance changes. This is a situation of interest in many applications of nondestructive evaluation. Synthetic and real data results show that the algorithm works well.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!