
doi: 10.1109/49.942509
Third-generation mobile radio systems use time division-code division multiple access (TD-CDMA) in their time division duplex (TDD) mode. Due to the time division multiple access (TDMA) component of TD-CDMA, joint (or multi-user) detection techniques can be implemented with a reasonable complexity. Therefore, joint-detection will already be implemented in the first phase of the system deployment to eliminate the intracell interference. In a TD-CDMA mobile radio system, joint-detection is performed by solving a least squares problem, where the system matrix has a block-Sylvester structure. We present and compare several techniques that reduce the computational complexity of the joint-detection task even further by exploiting this block-Sylvester structure and by incorporating different approximations. These techniques are based on the Cholesky factorization, the Levinson algorithm, the Schur algorithm, and on Fourier techniques, respectively. The focus of this paper is on Fourier techniques since they have the smallest computational complexity and achieve the same performance as the joint-detection algorithm that does not use any approximations. Similar to the well-known implementation of fast convolutions, the resulting Fourier-based joint-detection scheme also uses a sequence of fast Fourier transforms (FFTs) and overlapping. It is well suited for the implementation on parallel hardware architectures.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 114 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
