
doi: 10.1109/42.932742
pmid: 11465464
This paper presents a new method for image registration based on jointly estimating the forward and reverse transformations between two images while constraining these transforms to be inverses of one another. This approach produces a consistent set of transformations that have less pairwise registration error, i.e., better correspondence, than traditional methods that estimate the forward and reverse transformations independently. The transformations are estimated iteratively and are restricted to preserve topology by constraining them to obey the laws of continuum mechanics. The transformations are parameterized by a Fourier series to diagonalize the covariance structure imposed by the continuum mechanics constraints and to provide a computationally efficient numerical implementation. Results using a linear elastic material constraint are presented using both magnetic resonance and X-ray computed tomography image data. The results show that the joint estimation of a consistent set of forward and reverse transformations constrained by linear-elasticity give better registration results than using either constraint alone or none at all.
Fourier Analysis, Image Interpretation, Computer-Assisted, Image Processing, Computer-Assisted, Brain, Humans, Tomography, X-Ray Computed, Magnetic Resonance Imaging, Algorithms, Mathematics
Fourier Analysis, Image Interpretation, Computer-Assisted, Image Processing, Computer-Assisted, Brain, Humans, Tomography, X-Ray Computed, Magnetic Resonance Imaging, Algorithms, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 495 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
