
doi: 10.1109/3516.828584
Improving the position control of the disk drive read/write heads is an important step in increasing the storage capacity of a drive, especially in the presence of internal and external disturbances. To address this problem, the typical feedback loop of a disk drive servo system was augmented with a disturbance observer. The disturbance observer uses the position error signal and a nominal model of the plant to create an estimate of the disturbance. This estimate is then used to compensate for the disturbance effects. No additional sensors are required, which is particularly relevant in products such as disk drives where cost is a major concern. The effectiveness of the disturbance observer in rejecting shock and vibration disturbances is demonstrated in simulation and shake table experiments. The vibration experiments showed a decrease in the position error of 61%-96% at frequencies below 100 Hz. The maximum position error due to an experimental shock disturbance was decreased by 59%. The effects of noise in the position error signal are also discussed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 157 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
