
doi: 10.1109/34.954609
We present a new approach for object boundary extraction, called the watersnake. It is a two-step snake algorithm whose energy functional is minimized by the dynamic programming method. It is more robust to local minima because it finds the solution by searching the entire energy space. To reduce the complexity of the minimization process, the watershed transformation and a coarse-to-fine strategy are used. The new technique is compared to standard methods for accuracy in synthetic data and is applied to segmentation of white blood cells in bone marrow images.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 102 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
