
arXiv: quant-ph/0103098
We expand on our work on Quantum Data Hiding -- hiding classical data among parties who are restricted to performing only local quantum operations and classical communication (LOCC). We review our scheme that hides one bit between two parties using Bell states, and we derive upper and lower bounds on the secrecy of the hiding scheme. We provide an explicit bound showing that multiple bits can be hidden bitwise with our scheme. We give a preparation of the hiding states as an efficient quantum computation that uses at most one ebit of entanglement. A candidate data hiding scheme that does not use entanglement is presented. We show how our scheme for quantum data hiding can be used in a conditionally secure quantum bit commitment scheme.
19 pages, IEEE style, 8 figures, submitted to IEEE Transactions on Information Theory
Quantum Physics, Quantum computation, FOS: Physical sciences, Quantum measurement theory, state operations, state preparations, Quantum Physics (quant-ph), Authentication, digital signatures and secret sharing
Quantum Physics, Quantum computation, FOS: Physical sciences, Quantum measurement theory, state operations, state preparations, Quantum Physics (quant-ph), Authentication, digital signatures and secret sharing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 328 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
