
doi: 10.1109/10.804574
pmid: 10612904
Biopotential measurements are very sensitive to electromagnetic interference (EMI). EMI gets into the acquisition system by many ways, both as differential and common mode signals, driven-right-leg circuits (DRL) are widely used to reduce common mode interference. This paper reports an improvement on the classic DRL. The proposed circuit uses a transconductance amplifier to drive the patient's body. This configuration has some interesting properties, which provide an extended bandwidth for high-frequency EMI rejection (such as fluorescent lights interference). The improvement is around 20 dB for frequencies of few kilohertz and the circuit is easy to compensate for stability. A comparative analysis against a typical DRL is presented, the results obtained have been experimentally tested.
Electrophysiology, Radiation, Electricity, Electric Conductivity, Humans, Models, Theoretical
Electrophysiology, Radiation, Electricity, Electric Conductivity, Humans, Models, Theoretical
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
