
doi: 10.1109/10.133233
pmid: 1855800
Dental digital subtraction radiography requires accurate repositioning of the patient and X-ray source in order to facilitate correct diagnostic of bone loss. Present mechanical repositioning systems do not allow radiography of posterior teeth, and are uncomfortable for the patient. A new repositioning system that utilizes a six degrees of freedom position sensor and a robot arm with X-ray source is proposed. A mathematical model for the system is given, and the robot arm solution is obtained based on patient position. An error analysis is performed in order to determine the influence of sensor and robot errors on system accuracy. A series of experiments to determine sensor noise and accuracy are described. These tests showed relatively small errors over the work envelope of the sensor. Further tests showed that there is no adverse effect due to the presence of metal work in the patient's mouth. The high bandwidth of the sensor may allow real time tracking of small movements of the patient's head.
Radiography, Computer Systems, Subtraction Technique, Alveolar Bone Loss, Humans, Reproducibility of Results, Robotics, Tooth
Radiography, Computer Systems, Subtraction Technique, Alveolar Bone Loss, Humans, Reproducibility of Results, Robotics, Tooth
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
