<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.14243/372057 , 11568/1062469
The way people interact in daily life is a challenging phenomenon to capture and to study without altering the natural rhythm of interactions. Our work investigates the possibility of automatically detecting proximity among people, the first mandatory condition before a dyad starts interacting. We present Remote Detection of Human Proximity (ReD-HuP), an algorithm based on the analysis of Bluetooth Low Energy beacons emitted by commercial wearable tags. We validate ReD-HuP with real-world indoor settings and we compare its performance with respect to detailed ground truth data collected from a number of volunteers. Experimental results show an accuracy and F-Score metric up to 95%.
Proximity, Bluetooth Low Energy, Bluetooth Low Energy; Proximity; Social Interactions, Social Interactions
Proximity, Bluetooth Low Energy, Bluetooth Low Energy; Proximity; Social Interactions, Social Interactions
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |