<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11104/0214327
Most existing surrogate based evolutionary algorithms deal with only one model selected by the authors and different models are not considered. In this paper we propose a framework which enables automatic selection of types of surrogate models, and evaluate the effect of the type of selection on the overall performance of the resulting evolutionary algorithm. Two different types of model selection are tested and compared both in pre-selection scenario and in local search scenario.
surrogate modelling, model selection, meta-learning, multiobjective optimization
surrogate modelling, model selection, meta-learning, multiobjective optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |