
Purpose The purpose of this paper is to present analysis of short-circuit transients in a single-phase self-excited induction generator (SP-SEIG) for different capacitor topologies. Design/methodology/approach The paper presents field analysis of the short-circuit problem in the SP-SEIG on the base of two-dimensional field-circuit model of the generator. Findings The carried-out field computations of the tested SP-SEIG show that the self-excited induction generator is intrinsically protected from the results of sudden short-circuit, as output voltage and current drop rapidly to zero. Short-circuit is a problem when a series capacitor is used to improve output voltage regulation. Experimental results show that re-excitation of the generator is possible after the short-circuit is removed. Originality/value The originality of the paper is the presented analysis of short-circuit transients at terminals of SP-SEIG. A finite elements method-based field circuit model was used. The simulation results were validated by the measurements conducted on a laboratory test setup.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
