Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aircraft Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Aircraft Engineering and Aerospace Technology
Article . 2012 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cluster flight orbit design method for fractionated spacecraft

Authors: Jihe Wang; Shinichi Nakasuka;

Cluster flight orbit design method for fractionated spacecraft

Abstract

PurposeThe purpose of this paper is to propose an intuitive and effective cluster flight orbit design method for fractionated spacecraft.Design/methodology/approachBased on the concept of fractionated spacecraft, orbit design requirements for cluster flight in the case of fractionated spacecraft are proposed, and categorized into three requirements: stabilization requirement, passive safety requirement, and the maximum inter‐satellite distance requirement. These design requirements are then reformulated in terms of relative eccentricity and inclination vectors (E/I vectors) using a relative motion model based on relative orbital elements (ROEs). By using ROEs theory, the cluster flight orbit design issue is modelled as the distribution of relative E/I vectors for each member satellite in the cluster, and solved by combining three different heuristic search methods and one nonlinear programming (NLP) method.FindingsThe simulation results show that the NLP method is valid and efficient in solving the cluster flight orbit design problem and that for some cluster flight scenarios, the heuristic search methods can be adopted to give feasible solutions without the NLP method.Research limitations/implicationsThe cluster flight scenario in this paper is limited because the cluster should be in the near‐circular low earth orbit (LEO), and the relative distance between the member satellites should be small enough to satisfy the relative motion linearization assumption.Practical implicationsThe cluster flight orbit design method proposed in this paper can be applied by fractionated spacecraft mission designers to propose potential cluster flight orbit solutions.Originality/valueIn this paper, the relative E/I vectors method is adopted to propose an intuitive and effective cluster flight orbit design method for fractionated spacecraft.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?