Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Crystallographi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Crystallographica Section B Structural Science
Article . 1995 . Peer-reviewed
License: IUCr Copyright and Licensing Policy
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structures of quinoxaline antibiotics

Authors: Karen Schmidt-Bäse; E. F. Paulus; Ehmke Pohl; Andreas Heine; Peter G. Jones; George M. Sheldrick; Michael J. Waring;

Structures of quinoxaline antibiotics

Abstract

The crystal structures of three quinoxaline antibiotics-echinomycin 2QN, triostin C and the C222(1) form of triostin A--have been determined, and the structure of the P2(1)2(1)2(1) form of triostin A has been re-refined against our previously reported data. The molecular conformations are compared with those deduced from NMR data and those reported for two complexes of triostin A with oligonucleotides. Although the depsipeptide ring conformations are basically similar, the effective twofold molecular symmetry is violated by the folding of one of the quinoxaline chromophores in echinomycin 2QN and by a rotation of one of the ester planes with the formation of an intramolecular hydrogen bond in triostin C. In the oligonucleotide complexes of triostin A the chirality of the disulfide bridge is inverted. The alanine NH groups are involved in intermolecular hydrogen bonds in all four structures, and (except in echinomycin 2QN) the stacking of the chromophores in the crystal emulates the intercalation involved in DNA complex formation. In echinomycin 2QN, the antibiotic molecules are hydrogen bonded to form a helix along the crystallographic 6(5) screw axes, with a channel of disordered solvent running through the middle of the helix. Crystal data: (1), echinomycin 2QN, C53H66N10O12S2.2.5(C3H6O).2.5(H2O), M(r) = 1289.5, hexagonal, P6(5), a = b = 22.196(15), c = 24.64 (2) A, V = 10,513 (13) A3, Z = 6, Dx = 1.222 Mg m-3, lambda (Cu K alpha) = 1.5418 A, mu = 1.275 mm-1, T = 193 K, R = 9.0% for 4828 I > 2 sigma (I) and 11.8% for all 7102 unique reflections; (2), triostin C, C54H70N12O12S2.0.67(CHCl3).0.67(H2O), M(r) = 1234.2, orthorhombic, P2(1)2(1)2(1), a = 16.054 (8), b = 17.128 (9), c = 22.706 (12) A, V = 6244 (6) A3, Z = 4, Dx = 1.313 Mg m-3, lambda (Mo K alpha) = 0.71073 A, mu = 0.239 mm-1, T = 188 K, R = 7.7% for 4678 I > 2 sigma (I) and 14.0% for all 7260 unique reflections; (3), triostin A, C50H62N12O12S2.2(C7H14O2), M(r) = 1347.6, orthorhombic, P2(1)2(1)2(1), a = 20.94 (2), b = 18.53 (2), c = 18.80 (2) A, V = 7292 (13) A3, Z = 4, Dx = 1.228 Mg m-3, lambda (Cu K alpha) = 1.5418 A, mu = 1.245 mm-1, T = 293 K, R = 6.8% for 2116 I > 2 sigma (I) and 9.3% for all 2928 unique reflections; (4), triostin A, C50H62N12O12S2.HCl.2(C3H7NO), M(r) = 1269.9, monoclinic, C222(1), a = 10.622 (10), b = 17.035 (17), c = 35.21 (3) A, V = 6371 (10) A3, Z = 4, Dx = 1.324 Mg m-3, lambda (Mo K alpha) = 0.71073 A, mu = 0.199 mm-1, T = 153 K, R = 7.5% for 2164 I > 2 sigma (I) and 13.2% for all 3402 unique reflections. Extensive use was made of restraints on the geometrical and displacement parameters in the successful anisotropic refinement of these structures against weak data.

Related Organizations
Keywords

Models, Molecular, Antibiotics, Antineoplastic, Binding Sites, Magnetic Resonance Spectroscopy, Base Sequence, Molecular Structure, Protein Conformation, Molecular Conformation, Hydrogen Bonding, DNA, Echinomycin, Crystallography, X-Ray, Anti-Bacterial Agents, Oligodeoxyribonucleotides, Quinoxalines, Crystallization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?