<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Small-angle X-ray scattering (SAXS) has emerged as an important method for studying large-scale dynamic processes, ranging from protein folding to virus particle polymorphism. The renaissance of this method has resulted from a variety of advances in molecular biology and X-ray instrumentation, and these have dramatically increased the information content of the derived results. Modern synchrotron X-ray sources and advanced detector systems have lead to higher-resolution data in both the spatial and time domains. The purpose of this chapter is to address practical aspects of SAXS as they relate to and complement macromolecular crystallography. Keywords: data collection; data processing; protein folding; small-angle X-ray scattering; solution X-ray scattering; synchrotron radiation; time-resolved studies
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |