
Considerable evidence is now accumulating from both in vivo and in vitro studies that the oligosaccharide chains of the plant N-linked glycoproteins undergo modification or processing reactions after the oligosaccharide has been transferred from its lipid-linked oligosaccharide intermediate to the protein. These processing reactions occur in the endoplasmic reticulum and Golgi apparatus of the cell and involve the removal of certain sugars and the addition of other sugars. While the processing reactions appear to be generally similar to those that occur in animal cells, there are some notable differences, such as the addition of a beta-linked xylose to many of the plant glycoproteins. It will be interesting to determine the exact sequence of these reactions and how they are regulated in the cell. Recently, some very useful inhibitors have become available that act on the glycosidases that catalyze the removal of glucose and mannose. These inhibitors cause the accumulation of aberrant oligosaccharide chains on the glycoproteins. Such unusual glycoproteins should be valuable tools for studies on the role of oligosaccharide in glycoprotein function.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
