Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article . 2002 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
PLANT PHYSIOLOGY
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global Changes in Gene Expression in Response to High Light in Arabidopsis,

Authors: Rossel, Jan Bart; Wilson, Iain; Pogson, Barry;

Global Changes in Gene Expression in Response to High Light in Arabidopsis,

Abstract

Abstract A range of environmental conditions can lead to oxidative stress; thus, a prompt and effective response to oxidative stress is crucial for the survival of plants. Microarray and northern-blot analyses were performed toward the identification of the factors and signaling pathways that enable plants to limit oxidative damage caused by exposure to high light (HL). Arabidopsis plants grown under moderate light (100 μmol m−2 s−1) were exposed to HL (1,000 μmol m−2 s−1) for 1 h. The microarray analyses revealed that exposure of Arabidopsis to HL caused an increase in known antioxidant genes, as well as several unknown genes. Some of these unknown genes had homologies to possible regulatory genes and metabolic enzymes. Furthermore, it was found that a range of chaperones were up-regulated in the HL treatment and that this induction was specifically due to the HL stress. The temporal expression under HL and different oxidative stress conditions of a subset of HL-responsive genes was confirmed via northern-blot analysis. Results from the arrays were also compared with publicly available microarray data sets from a range of different stress conditions at the Arabidopsis Functional Genomics Consortium. This cross comparison enabled the identification of genes that may be induced by changes in redox poise. Finally, to determine if the genes that were differentially expressed by HL stress were under similar transcriptional control, we analyzed the promoter sequences for the presence of common motifs.

Keywords

Molecular Cha, Light, Northern blot analysis, Arabidopsis, Environment, Plants (botany), Antioxidants, Gene Expression Regulation, Plant, Oxidation, Northern, Promoter Regions, Genetic, Heat-Shock Proteins, Oligonucleotide Array Sequence Analysis, 580, Blotting, Keywords: Antioxidants, Plant, Blotting, Northern, Enzymes, Oxidative Stress, Metabolism, Genes, Gene Expression Regulation, Oxidative stress, Molecular Chaperones, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    248
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
248
Top 1%
Top 1%
Top 1%
Green
hybrid