
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>One of the most promising suggested applications of quantum computing is solving classically intractable chemistry problems. This may help to answer unresolved questions about phenomena like: high temperature superconductivity, solid-state physics, transition metal catalysis, or certain biochemical reactions. In turn, this increased understanding may help us to refine, and perhaps even one day design, new compounds of scientific and industrial importance. However, building a sufficiently large quantum computer will be a difficult scientific challenge. As a result, developments that enable these problems to be tackled with fewer quantum resources should be considered very important. Driven by this potential utility, quantum computational chemistry is rapidly emerging as an interdisciplinary field requiring knowledge of both quantum computing and computational chemistry. This review provides a comprehensive introduction to both computational chemistry and quantum computing, bridging the current knowledge gap. We review the major developments in this area, with a particular focus on near-term quantum computation. Illustrations of key methods are provided, explicitly demonstrating how to map chemical problems onto a quantum computer, and solve them. We conclude with an outlook for this nascent field.
Major updates: improvements to introduction and future work sections, added examples throughout, added additional references, streamlined sections on near-term approaches
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 883 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.01% |
