
arXiv: 2011.09636
Efficiently estimating properties of large and strongly coupled quantum systems is a central focus in many-body physics and quantum information theory. While quantum computers promise speedups for many such tasks, near-term devices are prone to noise that will generally reduce the accuracy of such estimates. Here we show how to mitigate errors in the shadow estimation protocol recently proposed by Huang, Kueng, and Preskill. By adding an experimentally friendly calibration stage to the standard shadow estimation scheme, our robust shadow estimation algorithm can obtain an unbiased estimate of the classical shadow of a quantum system and hence extract many useful properties in a sample-efficient and noise-resilient manner given only minimal assumptions on the experimental conditions. We give rigorous bounds on the sample complexity of our protocol and demonstrate its performance with several numerical experiments.
39 pages, 10 figures. We add numerical experiments with practical gate-dependent noise models to justify the wide application of our robust protocol
QA76.75-76.765, Quantum Physics, Physics, QC1-999, FOS: Physical sciences, Computer software, Quantum Physics (quant-ph), 530, 004
QA76.75-76.765, Quantum Physics, Physics, QC1-999, FOS: Physical sciences, Computer software, Quantum Physics (quant-ph), 530, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 70 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
