
For over 80 years of research, the conventional description of free-electron radiation phenomena, such as Cherenkov radiation, has remained unchanged: classical three-dimensional electromagnetic waves. Interestingly, in reduced dimensionality, the properties of free-electron radiation are predicted to fundamentally change. Here, we present the first observation of Cherenkov surface waves, wherein free electrons emit narrow-bandwidth photonic quasiparticles propagating in two-dimensions. The low dimensionality and narrow bandwidth of the effect enable to identify quantized emission events through electron energy loss spectroscopy. Our results support the recent theoretical prediction that free electrons do not always emit classical light and can instead become entangled with the photons they emit. The two-dimensional Cherenkov interaction achieves quantum coupling strengths over two orders of magnitude larger than ever reported, reaching the single-electron-single-photon interaction regime for the first time with free electrons. Our findings pave the way to previously unexplored phenomena in free-electron quantum optics, facilitating bright, free-electron-based quantum emitters of heralded Fock states.
Cherenkov Radiations, Quantum Physics, Engineering::Electrical and electronic engineering, Physics, QC1-999, 500, FOS: Physical sciences, 530, :Electrical and electronic engineering [Engineering], Electron Energy-Loss Spectroscopies, Quantum Physics (quant-ph), Physics - Optics, Optics (physics.optics)
Cherenkov Radiations, Quantum Physics, Engineering::Electrical and electronic engineering, Physics, QC1-999, 500, FOS: Physical sciences, 530, :Electrical and electronic engineering [Engineering], Electron Energy-Loss Spectroscopies, Quantum Physics (quant-ph), Physics - Optics, Optics (physics.optics)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
