Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review Research
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Entanglement fractalization

Authors: Yao Zhou; Peng Ye;

Entanglement fractalization

Abstract

We numerically explore the interplay of fractal geometry and quantum entanglement by analyzing the von Neumann entropy (known as entanglement entropy) and the entanglement contour in the scaling limit. Adopting quadratic fermionic models on Sierpinski carpet, we uncover intriguing findings. For gapless ground states exhibiting a finite density of states at the chemical potential, we reveal a super-area law characterized by the presence of a logarithmic correction for area law in the scaling of entanglement entropy. This extends the well-established super-area law observed on translationally invariant Euclidean lattices where the Gioev-Klich-Widom conjecture regarding the asymptotic behavior of Toeplitz matrices holds significant influence. Furthermore, different from the fractal structure of the lattice, we observe the emergence of a self-similar and universal pattern termed an “entanglement fractal” in the entanglement contour data as we approach the scaling limit. Remarkably, this pattern bears resemblance to intricate Chinese paper-cutting designs. We provide general rules to artificially generate this fractal, offering insights into the universal scaling of entanglement entropy. Meanwhile, as the direct consequence of the entanglement fractal and beyond a single scaling behavior of entanglement contour in translation-invariant systems, we identify two distinct scaling behaviors in the entanglement contour of fractal systems. For gapped ground states, we observe that the entanglement entropy adheres to a generalized area law, with its dependence on the Hausdorff dimension of the boundary between complementary subsystems. Published by the American Physical Society 2024

Related Organizations
Keywords

High Energy Physics - Theory, Quantum Physics, Condensed Matter - Mesoscale and Nanoscale Physics, Statistical Mechanics (cond-mat.stat-mech), Strongly Correlated Electrons (cond-mat.str-el), Physics, QC1-999, FOS: Physical sciences, Condensed Matter - Strongly Correlated Electrons, High Energy Physics - Theory (hep-th), Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold