
We propose Hamiltonian quantum generative adversarial networks (HQuGANs) to learn to generate unknown input quantum states using two competing quantum optimal controls. The game-theoretic framework of the algorithm is inspired by the success of classical generative adversarial networks in learning high-dimensional distributions. The quantum optimal control approach not only makes the algorithm naturally adaptable to the experimental constraints of near-term hardware, but also offers a more natural characterization of overparameterization compared to the circuit model. We numerically demonstrate the capabilities of the proposed framework to learn various highly entangled many-body quantum states, using simple two-body Hamiltonians and under experimentally relevant constraints such as low-bandwidth controls. We analyze the computational cost of implementing HQuGANs on quantum computers and show how the framework can be extended to learn quantum dynamics. Furthermore, we introduce a cost function that circumvents the problem of mode collapse that prevents convergence of HQuGANs and demonstrate how to accelerate the convergence of them when generating a pure state. Published by the American Physical Society 2024
Quantum Physics, Physics, QC1-999, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, Physics, QC1-999, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
