<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Belief Propagation is a well-studied message-passing algorithm that runs over graphical models and can be used for approximate inference and approximation of local marginals. The resulting approximations are equivalent to the Bethe-Peierls approximation of statistical mechanics. Here we show how this algorithm can be adapted to the world of PEPS tensor networks and used as an approximate contraction scheme. We further show that the resultant approximation is equivalent to the ``mean field'' approximation that is used in the Simple-Update algorithm, thereby showing that the latter is a essentially the Bethe-Peierls approximation. This shows that one of the simplest approximate contraction algorithms for tensor networks is equivalent to one of the simplest schemes for approximating marginals in graphical models in general, and paves the way for using improvements of BP as tensor networks algorithms.
RevTeX 4.1, 14 pages, 13 figures. Comments are welcome. Version2: very minor modifications
Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), Physics, QC1-999, FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), Physics, QC1-999, FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |