
pmid: 17026090
arXiv: cond-mat/0607407
Using fluorescence spectroscopy we directly measure entropy production of a single two-level system realized experimentally as an optically driven defect center in diamond. We exploit a recent suggestion to define entropy on the level of a single stochastic trajectory (Seifert, Phys. Rev. Lett. {\bf 95}, 040602 (2005)). Entropy production can then be split into one of the system itself and one of the surrounding medium. We demonstrate that the total entropy production obeys various exact relations for finite time trajectories.
Phys. Rev. Lett., in press
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 100 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
