
We present a topological description of quantum spin Hall effect (QSHE) in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings. We show that the topology of the band insulator can be characterized by a $2\times 2$ traceless matrix of first Chern integers. The nontrivial QSHE phase is identified by the nonzero diagonal matrix elements of the Chern number matrix (CNM). A spin Chern number is derived from the CNM, which is conserved in the presence of finite disorder scattering and spin nonconserving Rashba coupling. By using the Laughlin's gedanken experiment, we numerically calculate the spin polarization and spin transfer rate of the conducting edge states, and determine a phase diagram for the QSHE.
4 pages and 4 figures
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 542 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
