
pmid: 16803401
We report the observation of enhanced magnetic circular dichroism (MCD) near the Fermi level using visible and ultraviolet lasers. More than 10% MCD asymmetry is achieved for a perpendicularly magnetized 12 ML (monolayer) Ni film on Cu(001). By changing the work function with the aid of cesium adsorption, the MCD asymmetry of is found to be enhanced only near the photoemission threshold and to drop down to 0.1% at the photon energy larger than the work function by 0.6 eV. A theoretical calculation also shows enhanced MCD near the photoemission threshold, qualitatively in agreement with the experimental results. Other ultrathin films of 6 ML Ni, 15 ML Co, and 3 and 15 ML Fe on Cu(001) are also investigated. It is found that the perpendicularly magnetized films show much larger MCD asymmetries than the in-plane magnetized films as in the Kerr effect.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
