
pmid: 16606099
Here we report the first three-dimensional spatial spectrum of the low frequency magnetic turbulence obtained from the four Cluster spacecraft in the terrestrial magnetosheath close to the magnetopause. We show that the turbulence is compressible and dominated by mirror structures, its energy is injected at a large scale kp approximately 0.3 (l approximately 2000 km) via a mirror instability well predicted by linear theory, and cascades nonlinearly and unexpectedly up to kp approximately 3.5 (l approximately 150 km), revealing a new power law in the inertial range not predicted by any turbulence theory, and its strong anisotropy is controlled by the static magnetic field and the magnetopause normal.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 163 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
