
We point out a general framework that encompasses most cases in which quantum effects enable an increase in precision when estimating a parameter (quantum metrology). The typical quantum precision-enhancement is of the order of the square root of the number of times the system is sampled. We prove that this is optimal and we point out the different strategies (classical and quantum) that permit to attain this bound.
4 pages, 2 figures
Quantum Physics, metrology, Quantum information, quantum measurements, Physics, quantum metrology, 500, FOS: Physical sciences, Quantum Physics (quant-ph), 530
Quantum Physics, metrology, Quantum information, quantum measurements, Physics, quantum metrology, 500, FOS: Physical sciences, Quantum Physics (quant-ph), 530
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
