
pmid: 15698057
The phase dynamics of a semiconductor laser with optical feedback is studied by construction of the Hilbert phase from its experimentally measured intensity time series. The Hurst exponent is evaluated for the phase fluctuations and grows from 0.5 to approximately 0.7 (indicating fractional Brownian motion) as the feedback strength is increased. A comparison with numerical computations based on a delay-differential equation model shows excellent agreement and reveals the relative roles of spontaneous emission noise and deterministic dynamics for different feedback strengths.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
