
pmid: 15323778
arXiv: cond-mat/0309291
Past theoretical studies have considered excitations of a given flavor of composite fermions across composite-fermion quasi-Landau levels. We show that in general there exists a ladder of flavor changing excitations in which composite fermions shed none, some, or all of their vortices. The lowest energy excitations are obtained when the composite fermions do not change their flavor, whereas in the highest energy excitations they are stripped of all of their vortices, emerging as electrons in the final state. The results are relevant to the intriguing experimental discovery of Hirjibehedin {\em et al.} (cond-mat/0306152) of coexisting excitation modes of composite fermions of different flavor in the filling factor range $1/3>��\geq 1/5$.
5 pages, 4 figures
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
