
pmid: 14525412
arXiv: astro-ph/0311455
We explain the linear polarization of the Ca II infrared triplet observed close to the edge of the solar disk. In particular, we demonstrate that the physical origin of the enigmatic polarizations of the 866.2 nm and 854.2 nm lines lies in the existence of atomic polarization in their metastable lower levels, which produces differential absorption of polarization components (dichroism). To this end, we have solved the problem of the generation and transfer of polarized radiation by taking fully into account all the relevant optical pumping mechanisms in multilevel atomic models. We argue that `zero-field' dichroism may be of great diagnostic value in astrophysics.
10 pages, 3 figures
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
