
We argue that on its face, entanglement theory satisfies laws equivalent to thermodynamics if the theory can be made reversible by adding certain bound entangled states as a free resource during entanglement manipulation. Subject to plausible assumptions, we prove that this is not the case in general, and discuss the implications of this for the thermodynamics of entanglement.
4 pages, 1 figure, Revtex4; to appear in Phys. Rev. Lett
Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 84 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
