
A completely positive master equation describing quantum dissipation for a Brownian particle is derived starting from microphysical collisions, exploiting a recently introduced approach to subdynamics of a macrosystem. The obtained equation can be cast into Lindblad form with a single generator for each Cartesian direction. Temperature dependent friction and diffusion coefficients for both position and momentum are expressed in terms of the collision cross-section.
8 pages, revtex, no figures
Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), Quantum dynamics and nonequilibrium statistical mechanics (general), FOS: Physical sciences, Quantum stochastic calculus, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
Quantum Physics, Statistical Mechanics (cond-mat.stat-mech), Quantum dynamics and nonequilibrium statistical mechanics (general), FOS: Physical sciences, Quantum stochastic calculus, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 105 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
