
We present a new formulation of the Einstein equations that casts them in an explicitly first order, flux-conservative, hyperbolic form. We show that this now can be done for a wide class of time slicing conditions, including maximal slicing, making it potentially very useful for numerical relativity. This development permits the application to the Einstein equations of advanced numerical methods developed to solve the fluid dynamic equations, {\em without} overly restricting the time slicing, for the first time. The full set of characteristic fields and speeds is explicitly given.
uucompresed PS file. 4 pages including 1 figure. Revised version adds a figure showing a comparison between the standard ADM approach and the new formulation. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Appeared in Physical Review Letters 75, 600 (1995)
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 331 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
