
pmid: 10042847
Summary: Genetic fusion is introduced as a model for evolution. In the fusion two genomes are combined to generate a longer genome. Representing each species by a binary genetic sequence, we introduce a fitness function on the bit sequence. As the evolutionary dynamics, we incoroporate mutation, genetic fusion, and reproduction in proportion to fitness. It is found that genetic fusion leads to the appearance of module-type sequences and duplicated genes. The time necessary to find a sequence with large fitness is largely reduced by the inclusion of genetic fusion, which suggests the application of our algorithm to optimization problems.
Problems related to evolution, Genetics and epigenetics
Problems related to evolution, Genetics and epigenetics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
