
Polar dielectrics with low crystal symmetry and sharp phonon resonances can support hyperbolic shear polaritons - highly confined surface modes with frequency-dependent optical axes and asymmetric dissipation features. So far, these modes have been observed only in bulk natural materials at mid-infrared frequencies, with properties limited by available crystal geometries and phonon resonance strength. Here we introduce hyperbolic shear metasurfaces: ultrathin engineered surfaces supporting hyperbolic surface modes with symmetry-tailored axial dispersion and loss redistribution that can maximally enhance light-matter interactions. By engineering effective shear phenomena in these engineered surfaces, we demonstrate geometry-controlled, ultra-confined, low-loss hyperbolic surface waves with broadband Purcell enhancements, applicable across a broad range of the electromagnetic spectrum.
27 pages, 13 figures
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Physics - Optics, Optics (physics.optics)
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Physics - Optics, Optics (physics.optics)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
