<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 37925693
Quantum technology has led to increasingly sophisticated and complex quantum devices. Assessing their reliability (quantum reliability) is an important issue. Although reliability theory for classical devices has been well developed in industry and technology, a suitable metric on quantum reliability and its loss has not been systematically investigated. Since reliability-loss depends on the process, quantum fidelity does not always fully depict it. This study provides a metric of quantum reliability by shifting the focus from state-distinguishing to trajectory-distinguishing. In contrast to the conventional notion of classical reliability, which is evaluated using probabilistic measurements of binary logical variables, quantum reliability is grounded in the quantum probability amplitude or wave function. This research provides a universal framework for reliability theory encompassing both classical and quantum devices. It offers a new perspective on quantum engineering by elucidating how intensely the real quantum process a device undergoes influences its performance.
5 pages, 3 figures. Comments welcome!
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |