
pmid: 36867808
A quantum instruction set is where quantum hardware and software meet. We develop new characterization and compilation techniques for non-Clifford gates to accurately evaluate different quantum instruction set designs. We specifically apply them to our fluxonium processor that supports mainstream instruction $\mathrm{iSWAP}$ by calibrating and characterizing its square root $\mathrm{SQiSW}$. We measure a gate fidelity of up to $99.72\%$ with an average of $99.31\%$ and realize Haar random two-qubit gates using $\mathrm{SQiSW}$ with an average fidelity of $96.38\%$. This is an average error reduction of $41\%$ for the former and a $50\%$ reduction for the latter compared to using $\mathrm{iSWAP}$ on the same processor. This shows designing the quantum instruction set consisting of $\mathrm{SQiSW}$ and single-qubit gates on such platforms leads to a performance boost at almost no cost.
2 figures in main text and 21 figures in Supplementary Materials. This manuscript subsumes version 1 with significant improvements such as experimental demonstration and materials presentation
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
