
pmid: 32794860
arXiv: 2005.07141
The high temperature and electron degeneracy attained during a supernova allow for the formation of a large muon abundance within the core of the resulting proto-neutron star. If new pseudoscalar degrees of freedom have large couplings to the muon, they can be produced by this muon abundance and contribute to the cooling of the star. By generating the largest collection of supernova simulations with muons to date, we show that observations of the cooling rate of SN 1987A place strong constraints on the coupling of axion-like particles to muons, limiting the coupling to $g_{aμ} < 10^{-7.5}~\text{GeV}^{-1}$.
8 pages, 9 figures. v7: typo in Eq. 3 corrected; not reflected in published work
High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
