
We present a procedure to accelerate the relaxation of an open quantum system towards its equilibrium state. The control protocol, termed Shortcut to Equilibration, is obtained by reverse-engineering the non-adiabatic master equation. This is a non-unitary control task aimed at rapidly changing the entropy of the system. Such a protocol serves as a shortcut to an abrupt change in the Hamiltonian, i.e., a quench. As an example, we study the thermalization of a particle in a harmonic well. We observe that for short protocols there is a three orders of magnitude improvement in accuracy.
Quantum Physics, quantum thermodynamics, FOS: Physical sciences, open quantum systems, Quantum Physics (quant-ph)
Quantum Physics, quantum thermodynamics, FOS: Physical sciences, open quantum systems, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 70 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
