
pmid: 31172741
handle: 10044/1/72380
Thermodynamics imposes restrictions on what state transformations are possible. In the macroscopic limit of asymptotically many independent copies of a state---as for instance in the case of an ideal gas---the possible transformations become reversible and are fully characterized by the free energy. In this Letter, we present a thermodynamic resource theory for quantum processes that also becomes reversible in the macroscopic limit, a property that is especially rare for a resource theory of quantum channels. We identify a unique single-letter and additive quantity, the thermodynamic capacity, that characterizes the "thermodynamic value" of a quantum channel, in the sense that the work required to simulate many repetitions of a quantum process employing many repetitions of another quantum process becomes equal to the difference of the respective thermodynamic capacities. On a technical level, we provide asymptotically optimal constructions of universal implementations of quantum processes. A challenging aspect of this construction is the apparent necessity to coherently combine thermal engines that would run in different thermodynamic regimes depending on the input state. Our results have applications in quantum Shannon theory by providing a generalized notion of quantum typical subspaces and by giving an operational interpretation to the entropy difference of a channel.
6 pages, 2 figures, journal version. The technical appendix was split off into a companion paper that will be submitted separately (cf. today's arXiv listing)
General Physics, Quantum Physics, 02 Physical Sciences, quant-ph, FOS: Physical sciences, Quantum Physics (quant-ph), 530, 510
General Physics, Quantum Physics, 02 Physical Sciences, quant-ph, FOS: Physical sciences, Quantum Physics (quant-ph), 530, 510
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
