
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 28282190
We investigate the mechanical response of thin sheets perforated with a square array of mutually orthogonal cuts, which leaves a network of squares connected by small ligaments. Our combined analytical, experimental and numerical results indicate that under uniaxial tension the ligaments buckle out-of-plane, inducing the formation of 3D patterns whose morphology is controlled by the load direction. We also find that by largely stretching the buckled perforated sheets, plastic strains develop in the ligaments. This gives rise to the formation of kirigami sheets comprising periodic distribution of cuts and permanent folds. As such, the proposed buckling-induced pop-up strategy points to a simple route for manufacturing complex morphable structures out of flat perforated sheets.
Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, 620
Soft Condensed Matter (cond-mat.soft), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, 620
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 209 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
