Downloads provided by UsageCounts
The voter model has been studied extensively as a paradigmatic opinion dynamics' model. However, its ability for modeling real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social influence) with agents' recurrent mobility (as a proxy for social context), where the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be described as a noisy diffusive process that contains the proper anysotropic coupling topology given by population and mobility heterogeneity. The model captures statistical features of the US presidential elections as the stationary vote-share fluctuations across counties, and the long-range spatial correlations that decay logarithmically with the distance. Furthermore, it recovers the behavior of these properties when a real-space renormalization is performed by coarse-graining the geographical scale from county level through congressional districts and up to states. Finally, we analyze the role of the mobility range and the randomness in decision making which are consistent with the empirical observations.
13 pages, 13 figures
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Physics and Society (physics.soc-ph)
Social and Information Networks (cs.SI), FOS: Computer and information sciences, Physics - Physics and Society, FOS: Physical sciences, Computer Science - Social and Information Networks, Physics and Society (physics.soc-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 166 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 36 | |
| downloads | 143 |

Views provided by UsageCounts
Downloads provided by UsageCounts